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Galerkin Methods for Singular Integral Equations 

By K. S. Thomas 

Abstract. The approximate solution of a singular integral equation by Galerkin's method is 
studied. We discuss the theoretical aspects of such problems and give error bounds for the 
approximate solution. 

1. Introduction. In this paper we will discuss Galerkin's method for the approxi- 
mate solution of the singular integral equation 

(1.1) u(s) - I +I k(s, t)u(t) dt = f(s), 

in which k(s, t) is a real-valued kernel (assumed smooth), f(s) is a given function, 
and u(s) is the unknown function. The integral is to be interpreted as a Cauchy 
principal value throughout the paper. It is well known that the solution of (1.1) is 
not unique unless one restricts the space of functions in which the solution is 
sought in some manner. In this paper we restrict u to lie in L2[-1, 1]. 

In Section 2 we outline the theory for singular integral equations. This is mainly 
based on the treatment in [12]. We will show the uniqueness of the L2-solution of 
(1.1). Also, from the theoretical treatment, one obtains the asymptotic behavior of 
the solution at ? 1. The solution, in fact, nearly always has endpoint singularities. 

In Section 3 we give the error analysis for Galerkin's method. The main result is 
that 

(1.2) IIu - UnIIL2 < C(1 + o(l))II(I - Pn)U11, 

where un is the approximate solution, C a constant, and Pn is the projection 
operator from L2[- 1, 1] into the space of trial functions. 

Section 4 deals with the use of spline functions as a basis for Galerkin's method. 
The endpoint singularities mean that one must use splines on nonuniform parti- 
tions and singular functions as the trial space. We show how to calculate a 
partition that gives an asymptotic rate of convergence of O(N-k) where k - 1 is 
the degree of the spline. The paper is concluded by a numerical example. 

The basis for this paper is the section on singular integral equations in the book 
by Cherruault [4]. Different treatments for singular integral equations include [6], 
[7], [8], [9], [10]. 

2. Theoretical Treatment of Singular Integral Equations. The theoretical analysis 
of singular integral equations using complex variable theory dates from Carleman 
[3] and may be found in numerous text books (e.g. Tricomi [15], Muskhelishvili 
[12]). We follow the treatment of [12, Chapters 10, 14] and show that (1.1) has a 
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unique solution on L2[- 1, 1]. The reader is left to fill in the details. 
[12] shows that, in order to solve a singular integral equation such as (1.1) on an 

open interval, one must specify the class e of functions in which the solution is 
sought. This is often accomplished by imposing additional boundary conditions on 
the solution. The questions of existence and uniqueness of solutions are answered 
by computing the index K (an integer) of the integral equation with respect to the 
class of functions C. (When considering singular integral equations on a contour in 
the complex plane the index does not depend on additional boundary conditions.) 

The integral equation (1.1) is rewritten in the form 

(2.1) Au-Ku 

where 

(2.2) Au(s) = u(s) - k(s, s) j+ u(t) dt 

and 

(2.3) Ku (s) 
+ k(s, t) - k(s, s) u(t) dt. 

The operator A is called the dominant part of the integral equation. K is compact 
because of the smoothness (Holder-continuity) of k(s, t). 

The first stage of the theoretical analysis is to solve the equation 

(2.4) Av= g, 

where v, g E L2[-1, 1]. 
[12, Chapter 14] is used to determine the analytic solution of (2.4). We define the 

function 

(2.5) 0(s) = - arctan k(s, s), 

integers nl, n2 such that 

(2.6) -1 < 9(1) + n, <1, -1< -0(-1) + n2 < 1, 

and the function 

a(s) = (1 _ S)n (1 + s)+lexp[ t+12s dtl. 

The index of (2.4) is then given by 

(2.7) K -(nl+fn2), 

and the analytic solution of (2.4) by 

v= K*g 

g(s) + k(s, s)S1(s) f+l g(t) dt 

(2.8) 1 + k2(S, S) Q 1 + k2(s, s) 1 A(1 + k2(t, t))Q(t)(t - s) 

+ k(s, s)s2(s)P,K-l(s) 

21 + k2(s, s) 

where PK- l(s) is an arbitrary polynomial of degree K - 1, (PK ((s)- 0 if K < 0). 
The analytic solution gives useful information about the asymptotic behavior 

near the ends s = + 1. By applying the results in [ 12, Chapter 4] we can show that 
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(2.9) v(s) al(I - s)()+nl near s = 1, 

(2.10) v(s) - a2( + S)-,(-I)+n2 nears = -1, 

provided 9(1) # 0 and 0(-1) # 0. 
If 0(s) has a zero of order r at s = +1, then 

(2.11) v(s) . ff(s) + bl(1 ? s)rlog(l s), nears = +1 

The conditions (2.6) indicate that n1, n2 are only determined to within ? 1. Only 
by imposing the condition v E e do we determine n1, n2. By choosing nl, n2 to 
minimize the value n1 + n2 can take without violating the condition v E (C, (2.8) 
will give the most general solution in the class C and (2.7) the index. 

If we require that v E L2[-1, 1], we should replace (2.6) by 

(2.12) - 
I 

< l (1) + n, < 1, - 
I 

< -0(-1) + n2 < 1 
2 ~~~~~2 

to ensure that our solution is square-integrable. We can manipulate the first of 
these inequalities to get 

-1 < -2 - 0() < n, < 1- 0(l) < - 

since - < 9(s) <2. Hence, n1 can only take the values 0 or 1. Similarly n2 can 
only take the values 0 or 1. Hence, the minimum value of n1 + n2, subject to 
v E L2[-l, 1], is zero, i.e. K = 0. 

This establishes the uniqueness of the solution of the dominant equation. 
Having solved the dominant part of the singular equation, the full equation can 

be reduced to the Fredholm equation, 

u-K*Ku= K*f. 

Since the operator K*K is compact, the usual theory of the Fredholm alternative is 
applicable. This means that either the integral equation will have a unique solution 
in L2[-1, 1] or unity will be an eigenvalue of K*K. We will assume for the 
remainder of the paper the existence of a unique L2 solution. 

Moreover, we have assumed that f(s) and k(s, t) are smooth functions, so that 
g = Ku + f defines a smooth function g. Since u = K*g, u(s) will have similar 
asymptotic behavior as v(s) near s = ?1, governed by the equations (2.9)-(2. 11). 

3. The Error Analysis of Galerkin's Method. To give an error analysis of 
Galerkin's method, we rewrite (1.1) in the form 

(3.1) u-K,u-K2u=f, 
where 

(3.2) K1u(s) = I + k(s, t) + k(t, s) u(t) dt 

and 

(3.3) K2u(s) = 2I f+' k(s, t)- k(t, s) u(t) dt. 

The operator K1 is skew-hermitian and the operator K2 is symmetric and 
compact. We first give the analysis of Galerkin's method for the problem 
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(3.4) Bu = f, 
where B = I - K1. We define the bilinear functional a(u, v) = (Bu, v) for u, v E 
L2[-_, 1]. 

LEMMA 3.1. (i) Re a(u, u) = IIlUI2, U E L2[_-, 1]. 
(ii) la(u, v)J < IJBII Ilull llvll, u, v E L2[_1, 1]. 

(iii) B-1 exists and IIB-1ll < 1. 

Proof. (i) Re(K,u, u) = 1[(K,u, u) + (K,u, u)] = 2((K, + K,*)u, u) = 0 since K* 
- -K1. Hence, Re a(u, u) = (u, u) - Re(K,u, u) = IlU112. 

(ii) This follows directly from the Schwarz inequality. 
(iii) From (i) and the Schwarz inequality, one can show lu 12 lBull Ilull. 

Hence, liull S lIBull. (If liull f 0, the division is permissible, if u = 0, the result is 
trivial.) This establishes the existence of B-1, and lB-111 < 1 is established from a 
standard result in functional analysis. 

We let Sn c L2[- 1] be the finite-dimensional subspace (the dimension of Sn is 
n) in which we find the Galerkin approximation un. We let Pn be the projection 
operator onto the subspace Sn. The Galerkin approximation will satisfy 

a(un, vn) = (f, vn) for vn E Sn, 
and the error in method is given by the following. 

THEOREM 3.2. The error in Galerkin's method for the problem Bu = f is given by 

(3.5) Ilu - unll < IIBII I(I -Pn)ull. 

Proof. It is readily verified that a(u - un, wn) = 0 for all wn, E Sn. Hence, 

IIU - unll2 = Re a(u - un, u - uJ < la(u - un, u - u)l 
< |a(u - un, u - Pnu)l + |a(u -un, PnU 

- 
yJ 

= la(u -un, (I - Pn)u)l < JIBIJ Ilu -unll II(I -Pn)uII 
from Lemma 3.1. Hence, we may divide through by II u - un II and get the result. 

For the full equation (3.1) we put 

(3.6) Bu = v. 

Then (3.1) is equivalent to 

(3.7) v - K2B-v = f. 

Since B-1 is continuous and K2 compact, K2B-1 forms a compact operator. We can 
use the theory of prolongation and restriction operators developed in [11], [14] to 
produce error bounds. We define operators qn and sn as follows. 4i(t), i = 1, . .. , n, 
is a set of linearly independent functions that span Sn. Define 

qn: En-L2[-I, 1] 

by 
n 

(3.8) qnvn ( = z (p 
j=l 

and 

sn L2[-1, I]En 
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by 

It is readily confirmed that 

(3.10) Sn q =G 

the Gramm matrix of the basis. 
We put 

(3.11) Bn = sn Bqn- 

Then Galerkin's method for the problem (3.4) produces the linear equations 

(3.12) Bn Un = sf 

and qnUn is the Galerkin approximation. However, [14, Eq. 4] is not satisfied by qn, 
sn so we define prolongation and restriction operators pn, rn by 

(3.13) Pn = Bqn, rn = Bn-sn 

and now r,,pn = In , 

We define our norm in En by 

(3.14) IIVn|IE, = llqnVnilL2 

This norm is related to the Euclidean vector norm by the following 

LEMMA 3.3. (i) (qnfn, g) = <fn, sn9g> fn E En, g E L2[_, 1I] (i.e. sn* = q, q* = 

Sn). 

(ii) liVn,En = 
I Gnl 2vn 112' where Kf,n gn,> = 2 fs, denotes the inner-product in En 

and 11 112 is the usual Euclidean vector norm 

vn|I = <VnK, Vn >. 

Proof. 
n n 

(i) (q,f,,,g) = fi4ig g f(gO) = Jfn Sng>. 

(ii) I,lVnIE = jlqnvn,,j2 = (qnVn, qnVn) = <VnK SnqnVn> 

= <V,,, Gnvn> = <Gnl'2v,n Gn/2v n> =-1 GnlG2vn 112. 
Lemma 3.3 is useful in establishing the stability of the prolongation and restriction 
operators. 

THEOREM 3.4. If the norm in Euclidean space is defined by (3.14), then (i) 

IlPnll < JIBIJ, (ii) llrnll < 1. 

Proof. (i) If un E& En with IIUn IE = 1 

I|PnUnI|L 2 = IBqnUn,11LL2 < IIBII 11qnUni1 L2 = 11BII 

(ii) Letf e L2[-1, 1] with Ilf lI = 1. Then 

11 rnf Il E, = II Gn/ 2rnf 11-2 = II Gn2/2BnSn f 112. 

Now 

Bn =Gn - snKqn = Gnl,/2(I -'/2 Gn- /2)Gnl/2' 

-Bn = G,1/2(I - Gn-j/2snK1qn Gn-1/2)-Gn-1/2. 
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So 

rf lf IE < 11 (I - Gn-1/2s K,q G -1/2)-l 112* IIGn-s2nf 112 11 Gn"2Snf 112, 
since Gn-1/2sn K,qn Gn-/2 is skew-symmetric (Lemma 3.3(i)) and thus 

I(I - Gn-1/2snKjqnGn-1/2) 112 < 1. 

Now 

11Gn-'12snfI12 = <Snf, Gn-'snf> = (f, qnGn'snf). 

qnGn-'sn is simply the projection operator Pn from L2[-1, 1] into Sn and thus 

11lqn Gn-'snl <1 1. Hence, ( f, qn Gn-'Sn f) S<II f 112 

l lrnflIE<lfl 

establishing the result. 

LEMMA 3.5. For g E L2[-1, 1] we have 

(3.15) II(1 - Pnrn)9II < JIB 11211(I_Pn) B -g I . 

Proof. 

11(1 - Pnrn)gII = IIB(B' - qnBn-jsn)gII 

< IIBII II(B-' - qnB,-sn)gJJ < JIB11211(I -Pn)B'gll, 

since the second term is merely the error in Galerkin's method applied to the 
problem BW = g and we may use Theorem 3.2. 

Following the method described in [14, Section 6], (3.4) is to be approximated by 

(In -rnK2Bj'pn)vn = rnf, 

which is equivalent to 

(Gn- sn(KI + K2))Vn = Snf 

the Galerkin approximation of the full equation. For brevity we put 

Kn = rnK2Bjpn. 

[14, Theorem 3.2] can now be used to establish a bound on 11(In - Kn)-'E. We 

recall the assumption of a unique L2-solution which implies the existence of 
(I -K -1)-l 

THEOREM 3.6. If (I - K2B1')-' exists and 

(3.16) An = I(I- K2B-')'I 11IBI3 I1(I - Pn)B-'K211 < 1, 

then (In - Kn) is nonsingular and satisfies 

-Kf)-'IIE S IIBII II(I - K2B-')-'Il 
1 - an 

Proof. The term 

II0( - Pnrn)K2B-'l <1 SJIB 11211(I-_Pn)B-lK2B-11 

< JIB11211(I- Pn)B-'K211, 

since 1II B S 1 by Lemma 3. 1(iii). 
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The theorem follows directly from [14, Theorem 3.2]. We can now calculate the 
error IIu - q"vJ 1. 

THEOREM 3.7. The error in Galerkin's methodfor the equation (3.1) satisfies 

IIu - qnvnll < IIBII(l + C(n))jj(I - Pn)ull, 

where 

(3.17) C(n) = B1121111(j _K2B-')'II 11(I - Qn*)B*-K2*1 

Qn = pnrn, n < 1 is in Eq. (3.16), and * denotes the adjoint. 

Proof. Since Bu = v, we have 

Iu -qnVnll s< lu - qnBn-snBull + llqn(B-'snv - vn)II 

= Ilu - qnBn-snBull + llrnv - VnIlE,,' 

The first term is simply the error in Galerkin's method for the problem Bu = Bu, 
and 

lu - qnBn-snBull S jIBIj I1(I - Pn)ull. 

For the second term we use [14, Eq. 18] to get 

lIrnV - VnlIEn S 11(I - Kn)||'IIEnIrnfl 11 K2B-'(1 - pnrn)BuII. 

A bound for II(I - K)-' jj is given in Theorem 3.6 and 

11K2B-(I - pnrn)Bull 

= lIK2B-'(I - Qn)2Bull < lIK2B-(I - Qn)I I1(I - Qn)BuJl 

II(I - Qn*)B*-'K2*11 JIBIl nlIP)u11. 

Hence, 

Iju - qnvnll < JIBIJ I + IB 1121( 2B)l I(I Qn)B*-K211 )i(I - PJ)uj 

= I I (1 + C(n)) I I(I - P) u 1 as required. 

To discuss convergence as n - oo, we assume that Png -* g as n - oo for all 

g E L2[- 1, I]. We can then produce 

LEMMA 3.8. Suppose Png -*g as n -oo for au g E L2[- 1, 1]. Then 

(i) Pnrng -*g for all g E= L2[_ 1, I1], 

(ii) (Pn rn)*9 g g for all g E- L2[_ 1, I]. 
(iii) c(n)-*O in (3.17). 

Proof. (i) B-g E L2[-1, 1], so we can use Lemma 3.5. 

(ii) Since (pnrn)*g = q,(B*)-1sB*g, the convergence of (pnrn)*g to g depends on 
the convergence of Galerkin's method for the problem B*w = B*g. It is readily 
verified that B may be replaced by B* in the analysis prior to Theorem 3.2, and the 
desired convergence is readily established. 
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(iii) Since (B*)-1 is continuous and K2 compact, the composition (B*)-lK2 is 
compact and 11(I - Q,,*)(B*)-lK21 -- 0 from a standard theorem in functional 
analysis; cf. [14]. Thus c(n) -*0. 

This lemma gives the interesting result 

IV I- PJ)uII-< II l- qnVnll -6 JIBIJ II(I -Pn)uII + o(l), 
which is of the form (1.2). 

4. Spline Functions as a Basis for Galerkin's Method. The spline functions form a 
convenient basis for Galerkin's method. One can often calculate the resulting 
"stiffness" matrix analytically. However, we saw from Section 2 that the solution of 
the singular integral equations under discussion invariably possesses endpoint 
singularities. Hence there is a need to use splines defined on nonuniform meshes 
and to possibly incorporate suitable singular functions into the basis. 

The principal contributions to the theory of splines on nonuniform meshes have 
been Rice [13], de Boor [1], Burchard [2], and Dodson [5]. All of these authors have 
shown that with careful knot selection one can achieve asymptotically optimal rates 
of convergence (O(N-k) for splines of degree less than k). The difficulty in 
applying the theory is that the function we wish to approximate is unknown. In this 
case we may use the known asymptotic behavior at the endpoints to calculate a 
good set of knots. 

First we will define our notation. X will denote a partition 

7T: a = to < t, < . . . < tN = b 
of the interval [a, b]. Pk denotes the set of piecewise polynomials of degree less 
than k and having breakpoints at the ti, i = 1, . .. , N - 1. We will find approxi- 
mations in the class 

S p,, k = 1, 

X P,k n C[a, b], k >2, 

and determine a partition to give O(N -k) rates of convergence in the space 
L2[a, b]. (One can easily adapt the method to give estimates in more general spaces 
LP[a, b].) 

The first lemma is adapted from [2, Lemma 1]. 

LEMMA 4.1. Let f E C(k)[a, b]. Then there exist s E Sk, and a constant Ak, 

independent of f, for which 
(a) 

max [f(t) - s(t)| < Akhik max jgk)j, 
t, <t<t,+] t, <t<t,+, 

for i = O,... , N - , and hi = ti+ -t; 

(b) if k > 1, 

s(ti) = f(ti), i = O, . . ., N. 

Proof. One can construct s by equidistant Lagrange interpolation of degree k - 1 
in the interval [ti, ti+ l]. Then Ak = I /k!. One takes Al =2. 

Remark. By a more judicious choice of interpolation points in [ti, ti, 1], one could 
obtain smaller values for Ak when k > 2. We can now produce our main theorem. 
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THEOREM 4.2. Let f E C(k)[a, b] and g(t) be a continuous function that satisfies 

(i)g(t) > /3 > 0,fort E [a, b], 
(ii) If(k)(t)IG < g(t), for t E [a, b] and a = 2/(2k + 1). 
For an integer N, define the partition 7r* = (t,)N Z of [a, b], where to = a and 

(4.1) fig(t) dt = Nfbg(t) dt. 
N 

Then there exists an integer No such that, for N > No, there exists s* E sk such that 

If- *11 Ck f{fb () dt k+l/2 

where Ck is independent of N and f. 

Proof (cf. [2]). log g(t) is uniformly continuous, so there exists 8 > 0 such that 

max g(t) < 2 min g(t). 
x(t(x+s x<t<x+s 

Also, for ti defined by (4.1), 

hi = ti+ I- ti < -B g(t) dt=NB g(t) dt. 

We choose No such that hi < 8, i = O,.. ., N-1, if N > No. Then, for N > No 
and t e [ti, ti+1 

1f(k)(t)G <t max g(t) < 2 min g(t) 

< 2 ti+ig(t) dt = h bN g(t) dt. 

Hence, using the fact a = 2/(2k + 1), 

f(,k)(t)12 < (h 
f g(t) dt) fort E [ ti, ti+ ]I 

Choose s* E Sk from Lemma 1. Then 

N-1 

IIf _ S*112 < E A2hi2k + I max Pk)(t)1 
i=O ti<t<ti+i 

N-1 '2 b \2k+I A 222k~+I b \2k+I 

E A2h2k + I g(t) dt) 2k g(t) dt) 

Hence, 

lif s *1 < k bg(t) d k+l/2 

where Ck = 2 k+/2Ak. 

The partition r* will produce a fine mesh in regions where g(t) is large. 

However, the theorem is not directly applicable to functions with endpoint singu- 
larities. Dodson [5] has shown that a similar result will hold for functions whose 
kth derivative has a finite number of singularities and is monotonic in a neighbor- 
hood of such singularities. The key property is the integrability of the function g(t). 
It is instructive to consider the functionf(t) = ta (a > -1) over the integral [0, 1]. 
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Here we would take 

g(t) = Pa,k t2a-kl(2k + 1) 

where Pa,k is a constant. g(t) is clearly integrable, and from (4.1) we recover the 
partition due to Rice [13] 

ti = (-N ) I i = 0, . .. , N, 

2k + 1 
q 2a + I 

This result is useful since it gives insight into how the knots should be placed 
near the endpoints. It also points out a practical difficulty. If a is close to - 4, then 
q will get very large, so, although in theory we can get O(N-k) rates of conver- 
gence, the distance between knots becomes so small that computing with them is 
well-nigh impossible. Also, one can calculate 

(fl(t)dt)l/ a,k(2k 
+Ik12 

( Jo ) (~2 a + I) 

and see that the size of this term will be large when a -2, and the accuracy 
obtained with this partition may only be modest. 

The introduction of singular functions into the basis reduces, to a large extent, 
the problem of small intervals. We know that the solution of (1.1) has the form 

u(s) = (1 - s)a(j + s)w(s), 
where w(s) is smooth and a, 8 are known. For a given integer N, we construct a 
solution as follows. In an interval [-1, -1 + 81(N)], where 81(N) is a function of N, 
we find an approximation of the form 

(4.2) UN(s) = C1(1 + S)C0 

and in an interval [1 - S2(N), 1] (82(N) is a function of N) we find an approxima- 
tion of the form 

(4.3) UN(s) = C2( - S) 

C1, C2 are constants to be determined. 81(N) and 82(N) are chosen so that 

f-l+6I(N)(U(S) - UN(S))2 ds = I( N2k) 

U -) UN(S))2~ I (2) t (U(5) Uy(5))ds = ? 2k) 

In the interval [-1 + 81(N), 1 - 2(N)], u(s) is to be approximated by a spline 
uN(s) of degree k and with N knots chosen according to Theorem 4.2. 

If X denotes a partition of [-1 + 81, 1 - 82I, we let Sk be the space formed by 
augmenting the spline space with the singular functions. We can construct a 
function s SE7r such that jjS- uj = O(Nk), as follows. 

In the interval [-1, -1 + 81], u(s) has the form 

u(s) = (1 + s) v(s) = (1 + s)0{v(-I) + (1 + S)v' 

where v(s) is smooth and ( E (-1, -1 + 81). Hence, if u(s) is approximated by 
v(-1)(l + s), in [-1, -1 + 81], the L2 error will be 
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(I + S)2(+21V'()J2 ds < max I 
v'(s)I. 

-V2f~+ 3 -1 <s <-1 +61 

Hence, by taking 

a3+1.5/ 2/3+3 = N-k, 

i.e. 

(4.4) I= (2/8 + 3)1/(21+3)N-k/( +15) 

we will achieve the desired rate of convergence. Similarly, we take 

(4h5) 82d 

= 
(2a + 

3)1/(2a+3)N-k/(I3+1.5) to achieve the desired rate of convergence in [1 - 829 1]. 

To calculate a partition of [-1 + 81, 1 -82, we must find a suitable function 
g(s) for use in Theorem 4.2. One can show that 

u(k)(s) = (1 _ S)a-k(j + S)1 Wk(s), 

where Wk(s) is bounded, and we put 

g(s) D(1 - Va-k)a o0 < S < 1, 

l D(1 + 5)(-k)a -1 < s < 0 

where D is a constant chosen such that g(s) > [u(k)(s)]G. It is then easy to show that 

f|62g(t) dt = D (?(1 - 8jY) + 1(1 

with 

Y1 = (1-k) + 1, Y2= (a-k)o + 1. 

The desired partition is calculated from (4.1) and is 

ti= -1 + +N1 (-') + y' (I-2 

for i = 0, 1, .. . , N*, and 

t, = 1 _ {2 + X(N i) [(1- 222) + X3(l - 

i= N* + 1,...,N, 

where 

N* I -SY I 

N 
(1 _ 8-Y1) + 2Y ( 1- 82) 

The integer N* is needed because of the different forms of g(s) for s negative and 
positive. The constant D cancels out in the computation. 

Hence we may show the existence of a function s E sk with the desired rate of 
convergence. From Theorem 3.7 it will then follow that the rate of convergence of 
the Galerkin approximation UN(s), when our trial space is s,, satisfies 

Ilu - UNII = O(N-k). 
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The numerical solution will suffer a mild discontinuity at the points -1 + a, 
1 - 82, but numerical experience has shown that this is not a serious defect. 

5. Numerical Example. Galerkin's method, using a basis of piecewise linear 
functions and the singular functions of Section 4, was implemented and applied to 
the example 

u(s)- I 
+ I(t) dt =1, 

which has the exact solution 

u(s) 1 (= )14 

For X = 1, the following results were obtained. The first table gives the value of 
the constants C1, C2 of (4.2) and (4.3), together with 8, and 82 from (4.4) and (4.5). 

N C1 81 C2 82 

16 0.8405 0.0155 0.5971 0.0561 
32 0.8407 0.0054 0.5958 0.0263 

The value of C1 should tend to 2-1/4 = 0.8409 as N -x o, and C2 should tend to 
2-3/4 = 0.5946 as N x-* . We will now compare the Galerkin approximation with 
the true solution at interior points 

s N= 16 N= 32 true 

-0.8 1.2256 1.2243 1.2247 
-0.4 0.8747 0.8738 0.8739 

0.0 0.7068 0.7073 0.7071 
0.4 0.5720 0.5721 0.5721 
0.8 0.4082 0.4082 0.4082 
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